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Critical Evaluation of Equivalent Moment Factor  
Procedures for Laterally Unsupported Beams
Edgar Wong and RoberT G. Driver

ABSTRACT

This paper compares the numerous approaches to determining equivalent moment factors used in evaluating the elastic critical moment of later-
ally unsupported beams for a wide variety of moment distributions. The investigation revealed that the procedure used currently in the Canadian 
design standard produces unacceptable results for the majority of the common bending moment distributions considered. Large abrupt changes 
in Cb values with only slight changes in the shape of the moment diagram were observed in 6 out of the 12 moment distribution comparisons, 
which contributes to the overall poor performance of the procedure.

The study also revealed drawbacks inherent in other methods. Overall, the quarter-point moment equations developed for general moment 
distributions capture the trends of the numerical data reasonably well. However, for example, the evaluations show that the 2005 AISC equation 
produces non-conservative results in some situations, while the British equation, although generally conservative, produces comparatively less 
accurate results. Other equations examined capture the trends of the numerical data more consistently by implementing a square root format 
in the quarter-point moment method. However, they produce results that exceed the numerical data in several cases, implying that they are too 
aggressive for design purposes.

To capture the best features of the various methods investigated, yet improve the overall suitability for general design purposes, a modified 
quarter-point moment equation using the square root format is proposed. Not only does it simulate the trends of the numerical solutions closely, 
but it also produces reasonable and conservative equivalent moment factors, even in cases where other methods do not. Like all quarter-point 
moment methods, the proposed equation does not produce good results in some situations where concentrated moments are applied. Never-
theless, it is believed to be appropriate for the vast majority of typical design cases.

Keywords: lateral support, equivalent moment factors, Cb, beams.

Introduction

The elastic lateral-torsional buckling moment capacity of a 
doubly-symmetric steel beam is governed primarily by the 
member’s weak-axis moment of inertia, Iy , and the torsion 
parameter. The latter factor can be expressed as

	

π
L
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w

where L is the laterally (and torsionally) unbraced length of 
the beam, E is the elastic modulus, G is the shear modulus, 
Cw is the warping constant, and J is the torsional constant. 
Previous research has shown that the following factors can 
also influence the critical moment capacity significantly 
(Clark and Hill, 1960; Nethercot and Rockey, 1972; Nether-
cot and Trahair, 1976):

1.	 The internal moment distribution between brace 
points;

2.	 The elevation of the applied load with respect to the 
shear center;

3.	 The degree of lateral, rotational, and warping restraint 
at the brace points; and

4.	 The potential for less critical adjacent unbraced seg-
ments to restrain buckling (i.e., interaction buckling).

Although methods that consider all of these factors in the 
computation of the elastic critical moment are available, 
most steel design specifications simplify the analytical pro-
cess by accounting only for the moment distribution effect 
among the four factors. That is, loads are assumed to be ap-
plied at the shear center (unless, perhaps, they are applied 
significantly above the shear center (for downward loads) by 
a means that does not also serve as a brace), lateral braces 
are assumed to prevent both lateral displacement and twist 
of the beam’s cross section, while restraining neither weak-
axis rotation nor warping, and the potential for interaction 
buckling is neglected. For these reasons, this paper addresses 
the effect of the moment distribution only.
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member delivers its reaction load to the primary beam away 
from its compression flange without providing significant 
rotational restraint to the beam and the designer deems this 
to be inadequate as a bracing mechanism. Other typical ex-
amples of loads that are not associated with the provision 
of effective bracing include suspended loads, supported col-
umn reaction loads and loads where the connection of the 
tributary beam to the primary beam is bolted and employs 
horizontally slotted holes. Considering the multitude of con-
ditions that a structural designer may face, group 1, 2 and 3 
moment distributions must all be included in any evaluation 
of equivalent moment factors.

There are many equations and methods published in the 
general literature and design specifications for determining 
equivalent moment factors. In this paper, comparisons of 
equivalent moment factors determined using various meth-
ods for 12 different moment distribution types, described in 
Table 1, are presented. In order to generalize the moment 
distribution types, three factors are introduced in Table  1: 
(1) for Type 1, the factor κ is the ratio of the absolute value 
of the smaller to larger end moment of the unbraced seg-
ment, and it is taken as positive for double curvature bending 
and negative for single curvature; (2) for Types 2 to 5, 8, 9, 
11 and 12, the factor β is the ratio of the actual end moment 
to the fixed end moment; and (3) for Types 6, 7 and 10, the 
factor a is the distance from a concentrated load to the near-
est vertical support (see Table 1). The moment distribution 
types selected are believed to be common enough to cor-
respond with typical design loading cases and cover a broad 
enough range to lead to general conclusions.

The original objective of this study was to examine the 
adequacy of the equivalent moment factor specified in Cana-
dian standard CAN/CSA‑S16‑01. During the course of this 
examination, a critical evaluation of other published meth-
ods was also conducted. Not only are the shortcomings of 
the CAN/CSA‑S16‑01 procedure clarified, but a broad col-
lection of solutions determined by other methods is also pre-
sented herein to illustrate their performance and limitations. 
Although relevant physical test data are scarce, numerical 
data are included as reference values where available. Fi-
nally, a new equivalent moment factor equation is proposed 
based on the findings of the investigation that incorporates 
the best features observed in the various existing methods. It 
is demonstrated that the proposed equation effectively rec-
tifies current CAN/CSA‑S16‑01 deficiencies and produces 
accurate, yet conservative, approximations to the numerical 
solutions over a wide range of moment distribution types.

PROCEDURES Published in THE  
GENERAL Literature

The fundamental aspects that characterize the non-uniform 
moment effect are the rate of change of the moment along 
the beam length, the number of curvature reversals between 

For a doubly-symmetric beam subject to a uniform (con-
stant) moment about the strong axis along its length, the 
critical lateral-torsional buckling capacity, Mcr  , can be ex-
pressed as:

	 = + Eπ
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The boundary conditions assumed in this equation are such 
that both ends of the unbraced segment are restrained as 
described in the previous paragraph. The value determined 
from Equation  1 is commonly referred to as the “basic”  
lateral-torsional buckling moment capacity, not only because 
it is the simplest to derive theoretically, but, more impor-
tantly, it gives the lowest possible capacity of a beam seg-
ment between properly designed brace points when loads are 
applied at the shear center (Kirby and Nethercot, 1979). It 
is widely accepted that the effect of a non-uniform moment 
distribution can be approximated simply by multiplying 
Equation 1 by an equivalent (uniform) moment factor, Cb.  
Since a non-uniform moment distribution is less severe than 
a uniform one, the value of this factor is always greater than 
or equal to 1.0.

In general, non-uniform moment distributions between 
brace points can conveniently be categorized into three 
groups: (1)  linear moment distributions arising when there 
are no loads or moments applied between brace points; 
(2) non-linear moment distributions with multiple constant 
moment gradient regions; and (3) non-linear moment distri-
butions with continuously varying moment gradients. The 
primary difference between the last two groups is that beams 
within group 2 are not subjected to any distributed load and 
their moment distributions can be transformed into group 1 
distributions by adding braces at points where the moment 
gradient changes. It is important to realize that some existing 
equivalent moment factor equations have been derived for 
group 1 moment distributions only, whereas others purport 
to be applicable for all groups. Misusing the equations may 
lead to significant errors in critical moment predictions.

It should be noted for clarity that in many cases the means 
of delivering loads to a beam will also provide effective lat-
eral bracing to that beam, apparently making group 1 mo-
ment distributions the only case that will occur in practice. 
However, circumstances where loads are applied to a beam 
with little, or perhaps uncertain, resulting bracing effective-
ness are relatively common. One example of this is where 
two parallel primary beams have loads delivered to them by 
simply supported transverse secondary framing members 
(i.e., the two primary beams “lean on” each other with re-
spect to the intermediate lateral support points at the ends of 
the secondary members). If the two primary beams become 
unstable at a similar time in the loading regime, they can-
not be considered to support each other laterally (Galam-
bos, 1998). Another common example is where a secondary 
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Table 1. Types of Moment Distributions Considered in the Study *

Type 1—End Moments Only

  

Type 2—Uniformly Distributed Load with Equal End Moments

  

Type 3—Uniformly Distributed Load with One End Moment

  

Type 4—Mid-span Concentrated Load with Equal End Moments

  

Type 5—Mid-span Concentrated Load with One End Moment

  

Type 6—Concentrated Load with Pinned Ends

  

* The ends of the members depicted are brace points, as well as points denoted by the symbol x.
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Table 1 (cont.). Types of Moment Distributions Considered in the Study *

Type 7—Two Equal Concentrated Loads Symmetrically Placed with Pinned End

  

Type 8—Uniformly Distributed Load with Equal End Moments, Brace at Mid-span

  

Type 9—Uniformly Distributed Load with One End Moment, Brace at Mid-span

  

Type 10—Two Equal Concentrated Loads Symmetrically Placed, Brace at Mid-span

  

Type 11—Two Equal Concentrated Loads at Third Points with Equal End Moments

  

Type 12—Two Equal Concentrated Loads at Third Points with One End Moment

  
* The ends of the members depicted are brace points, as well as points denoted by the symbol x.
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brace points, and the distance between the maximum moment 
and the brace locations. Due to the challenge of developing a 
simple procedure for determining equivalent moment factors 
that can capture all three aspects concurrently for all kinds 
of moment distributions, not all published methods are ap-
plicable to all moment distribution types. Available methods 
for determining equivalent moment factors can be divided 
into three categories:

1.	 Methods developed for unequal end moments only 
(e.g., Salvadori, 1955; Austin, 1961).

2.	 Methods developed for a general moment distribution 
(e.g., Kirby and Nethercot, 1979; Serna et al., 2006)

3.	 Methods developed to address numerous specific mo-
ment distributions individually (e.g., Trahair, 1993; 
Clark and Hill, 1960; Suryoatmono and Ho, 2002).

Methods Developed for Unequal End Moments Only

Two equations that are commonly used to approximate the 
effect of a constant moment gradient between brace points 
on the critical elastic moment are Equations 2 and 3 shown 
in Table 2. The parameter κ quantifies the influence of the 
flange force variation between the two ends. That is, if a 
beam flange is subjected to a bending-induced compression 
that varies between lateral supports, the degree of varia-
tion dictates the tendency of the beam to buckle elastically 
(Zuraski, 1992). Furthermore, if the flange force varies be-
tween tension and compression (i.e., when the unbraced seg-
ment of the beam is in double curvature), the beam is even 
less susceptible to lateral-torsional buckling. Equation  2 
represents a lower bound to the original solutions developed 
by Salvadori (1955) using the Rayleigh-Ritz method, and 
Equation 3 is from the work of Austin (1961) for in‑plane 
bending of beam-columns. Equation  3 is considered inap-
propriate for assessing out-of-plane buckling due to flexure 
alone because it is derived for members subjected to both 
axial load and bending simultaneously (AISC, 2005b), and, 
as such, it is not considered further.

Methods Developed for a General Moment  
Distribution—Quarter-Point Moment Methods

Equation 4, shown in Table 2, was developed to be applicable 
to all types of moment distributions (Kirby and Nethercot, 
1979). It utilizes the magnitudes of the bending moments 
at four specific locations along the unbraced segment: the 
quarter point, Ma, centerline, Mb, third-quarter point, Mc, 
and maximum, Mmax, moments. Equations with this format 
are referred to as the “quarter-point moment methods” in 
this paper. The main function of these four moments is to 
describe the degree of non-uniformity of the moment along 
the unbraced length, thus approximating its influence on 
the critical moment. Although not specified explicitly in the 

original publication, it has been indicated in numerous sub-
sequent publications that using the absolute values of these 
moments in the equation is appropriate. Unlike Equations 2 
and 3, the quarter-point moment methods are independent of 
the magnitudes of the end moments, unless one or both are 
also the maximum moment in the unbraced segment.

Another quarter-point moment method was developed by 
Serna et al. (2006) by curve fitting their numerical analysis 
results that account not only for the effect of a non-uniform 
moment distribution, but also the lateral, rotational and warp-
ing restraints at the brace points. Since the latter influences are 
not within the scope of this paper, the equation is written in a 
simplified form for laterally and torsionally simple end condi-
tions as Equation 5 in Table 2. The main distinction of this 
equation as compared to Equation 4 is that the individual mo-
ment terms are squared and a square root format is assigned. 

Methods Developed for Specific Moment Distributions

Clark and Hill (1960) and Nethercot and Trahair (1976) each 
published a list of equivalent moment factor values based on 
numerical analyses for specific non-uniform moment distri-
butions, as shown in Table 3. Although not applicable to all 
typical design loading cases, they provide a good database 
from which designers can approximate equivalent moment 
factors for other distributions. The two sets are nearly identi-
cal, except for the value in the Type 2 distribution when β 
equals 1.0. For this case, the value of 1.30 from Clark and 
Hill (1960) appears to be incorrect, and if it is recalculated 
using the original source of data, a value of 2.52 is obtained, 
as reflected in Table 3.

Instead of discrete values, Trahair (1993) published indi-
vidual equations (see Table 3) for several moment distribution  
types based on curve fitting of numerical data. These equations  
apply to a much wider range of moment distributions than do 
the lists of discrete values because the designer can adjust the 
point load location along a beam or the magnitude of the end 
moments. Nethercot and Rockey (1972) also proposed a Cb 
equation for moment Type 7 that is a function of the distance 
between the point load and the closer support. Analogous 
equations presented by Suryoatmono and Ho (2002) are rel-
atively complex as compared to those of Trahair (1993), and 
they address moment Types 1 through 3 only; therefore, they 
are not included in the comparisons in this paper.

Procedures in Design SPECIFICATIONs

Because the methodologies discussed in the previous section 
have various degrees of practicality, accuracy, consistency 
and computational complexity, different steel design speci-
fications have adopted different procedures for determining 
the equivalent moment factor to be used for the design of 
laterally unsupported beams. Nevertheless, the majority use 
a single method that is intended to be applicable to all types 
of moment distributions. 
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Table 2. Equivalent Moment Factor Equations Evaluated in This Study

Equation a Publication Equivalent Moment Factor Equation

2 Salvadori (1955) b, c 3 2Cb = + + ≤κ κ1.75 1.05 0. .32

3 Austin (1961) ) 2Cb = − ≤−( . .0 6 0 4 1κ .5

4 Kirby and Nethercot (1979)
4 32 3

C
M

M M M M
b

max

max a b c

=
+ + +

12

5 Serna et al. (2006)
6 9

C
M

M M M M
b

a b c

=
+ + +

35

9 1
max

max

2

2 2 2 2

6 AISC Specification ≤
5 3 4 3

C
M

M M M M
b

a b c

=
+ + +
12.5

2.
3.0

max

max

7 British Standard BS 5950-1
. .5 0. .

C
M

M M M M
b

a b c

=
+ + +

≤max

max

.
0 2 0 15 0 15

2 273

8 Australian Standard AS4100 C
M

M M M
b

a b c

=
+ +

≤
1.7

2.5
max

2 2 2

9 Proposed Equation
4 7 4

C
M

M M M M
b

a b c

=
+ + +

≤
4 max

max

.
2 2 2 2

2 5

a	 Equation 1, specified in the body text, is the general lateral-torsional buckling equation to which these Cb equations are applied.
b	 Adopted by CAN/CSA-S16-01 and CAN/CSA-S6-06, but with an upper limit of 2.5.
c	 Adopted by AASHTO with additional requirements.

CAN/CSA-S16-01—Limit States Design of Steel  
Structures (CSA, 2001)

This Canadian design standard specifies Equation 2 in Table 
2 for determining the equivalent moment factor for unbraced 
beam segments subjected to end moments, except that an up-
per limit of 2.5 is used instead of 2.3. It is not clearly stated 
in the standard whether or not this is intended to apply to 
beams that are also subjected to transverse loads within this 
length. Although the sign of κ is assigned as described previ-
ously, no indication is given of how to account for triple cur-
vature (e.g., Moment Type 2 in Table 1). The standard also 
specifies that for non-linear moment distributions where “the 
bending moment at any point within the unbraced length is 
larger than the larger end moment” (CSA, 2001), the equiva-
lent moment factor be taken as 1.0. This additional clause ef-
fectively requires the designer to ignore the beneficial effect 
of a non-uniform moment distribution under this common 
circumstance. Moreover, if the standard is interpreted to 
mean that Equation 2 applies just for cases of end moments 

only (without any transverse loads), then it is silent on how 
to account for non-uniform moment distributions that are not 
captured by this additional clause.

CAN/CSA-S6-06—Canadian Highway Bridge Design 
Code (CSA, 2006)

This standard has adopted the same procedure as CAN/
CSA-S16-01; however, the commentary to the standard re-
fers users to the procedures of Clark and Hill (1960) as an 
alternative approach.

ANSI/AISC 360-05—Specification for Structural Steel 
Buildings (AISC, 2005a)

The American steel design specification for buildings stipu-
lates that Equation  6 in Table 2 be used to determine the 
equivalent moment factor. As shown in the table, the only 
differences between Equations 4 and 6 are the coefficients 
for the terms Mmax. This adjustment was made in an attempt 
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Table 3. Discrete Equivalent Moment Factors and Equations from the Literature a

Moment 
Type

Clark & Hill  
(1960)

Nethercot & 
Trahair (1976)

Trahair  
(1993)

Eurocode 3
(ECS, 1992)

1

κ = −0.5	 Cb = 1.31 
κ = 0	 Cb = 1.77 
κ = 0.5	 Cb = 2.33
κ = 1.0	 Cb = 2.56

κ = 0	 Cb = 1.75
κ = 1.0	 Cb = 2.56

Equation 2 (Table 2) κ = −0.75	 Cb = 1.141
κ = −0.5	 Cb = 1.323
κ = −0.25	 Cb = 1.563
κ = 0	 Cb = 1.879
κ = 0.25	 Cb = 2.281
κ = 0.5	 Cb = 2.7
κ = 0.75	 Cb = 2.927
κ = 1.0	 Cb = 2.752

2 b

β = 0	 Cb = 1.13
β = 1.0	 Cb = 1.30
β = 1.0	 Cb = 2.52

β = 0	 Cb = 1.13
β = 1.0	 Cb = 2.58

Numerical result:
β = 0	 Cb = 1.09
Equations: 
For 0 ≤ β < 0.75,	 Cb = 1.13 + 0.12β 
For 0.75 ≤ β ≤ 1.0,	 Cb = −2.38 + 4.8β

β = 0	 Cb = 1.13
β = 1.0	 Cb = 1.285
β = 1.0	 Cb = 2.52

3

same as Type 2 for 
β = 0

same as Type 2 for 
β = 0

Numerical result:
β = 0	 Cb = 1.09
Equations:
For 0 ≤ β < 0.7,	 Cb = 1.13 + 0.1β 
For 0.7 ≤ β ≤ 1.0,	 Cb = −1.25 + 3.5β 

same as Type 2 for β = 0

4

β = 0	 Cb = 1.35
β = 1.0	 Cb = 1.70

β = 0	 Cb = 1.35 
β = 1.0	 Cb = 1.70

Numerical result:
β = 0	 Cb = 1.31
Equation:
For 0 ≤ β ≤ 1.0,	 Cb = 1.35 + 0.36β

β = 0	 Cb = 1.365
β = 1.0	 Cb = 1.565

5

same as Type 4 for 
β = 0

same as Type 4 for 
β = 0

Numerical result:
β = 0	 Cb = 1.31
Equations:
For 0 ≤ β < 0.89,	 Cb = 1.35 + 0.15β 
For 0.89 ≤β ≤ 1.0,	 Cb = −1.2 + 3.0β

same as Type 4 for β = 0

6

a = L /2 same as 
Type 4 for β = 0

a = L /4	 Cb = 1.44
a = L /2	 Cb = 1.35

Numerical result:
a = L/2	 Cb = 1.31
Equation:
For 0 ≤ a/L ≤ 0.5,	 Cb �= 1.35  

+ 0.4(1−2a/L)2

a = L /2	� same as Type 
4 for β = 0

7 c

a = L /4	 Cb = 1.04
a = L /2	 same as 
Type 4 for β = 0

a = L /4	 Cb = 1.04
a = L /2 same as 
Type 4 for β = 0

Numerical result:
a = L/2	 Cb = 1.31
Equation:
For 0 ≤ a/L ≤ 0.5,	 Cb �= 1.0  

+ 0.35(2a/L)2

a = L/4	 Cb = 1.046
a = L/2	� same as Type 

4 for β = 0

a	 No Cb values or equations were published for moment Types 8 to12.
b	 Strikethrough indicates error in original reference; refer to text for clarification.
c	 For moment Type 7 only, Nethercot and Rockey (1972) propose Cb = 1.0 + (a/L)2.

to give better results for cases of fixed end supports (AISC, 
2005b). For design purposes, this specification sets an upper 
limit to the equivalent moment factor of 3.0, which is the 
highest among all specifications discussed here. The com-
mentary to the specification indicates that Equation 2 is also 
appropriate for cases where the moment distribution is linear 
between brace points.

AASHTO—LRFD Bridge Design Specifications 
(AASHTO, 2007)

Similar to the current CAN/CSA-S16-01 procedure, this 
specification uses Equation  2 as the primary equivalent 
moment factor equation and also specifies that the value 
be taken as 1.0 whenever the larger end moment is not the 
largest moment throughout the unbraced segment. However, 
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ASSESSMENT APPROACH

Equivalent moment factors for 12 diverse selections of bend-
ing moment distribution types have been determined from 
the various equations discussed in this paper. These solutions 
are compared against each other, as well as with numerical 
results presented in the literature. Although White and Kim 
(2008) included the results of hundreds of physical test re-
sults collected from numerous sources in a comprehensive 
statistical study on the flexural resistance of beams, the ma-
jority of these do not fall within the scope of the current study 
because the experiments either involved transverse loading 
applied above or below the shear center, were conducted on 
beams with mono-symmetric or hybrid cross-sections, were 
influenced by interaction buckling, or resulted in inelastic 
global or local buckling. Nonetheless, they included four 
experimental results from simply supported beams tested 
with a mid-span concentrated load applied through the shear 
center (i.e., moment Type 6, a/L = 0.5) that failed by elastic 
lateral-torsional buckling. Since there are so few suitable 
test results available, and because this particular moment 
distribution is associated with a relatively well-established 
equivalent moment factor, their inclusion would add little to 
the discussion presented herein. Therefore, these four tests 
are excluded from the comparisons in this paper.

Representative Moment Distributions

As shown in Table 1, the bending moment types considered 
in this study have been selected to cover a broad variety of 
potential situations. Moreover, each moment type envelopes a 
wide range of moment diagrams by varying either the magni-
tude of the end moments or the concentrated load locations.

The value of κ for Type 1 (linear) moment distributions 
reflects the ratio of the end moments and can therefore vary 
only from ‑1.0 to 1.0. The variable β, used for moment 
Types 2 to 5, 8, 9, 11 and 12, was assigned to alter the mag-
nitude of the end moments. When β is set to 0, it represents 
a pinned (in plane) boundary condition, whereas when it is 
equal to 1.0, it represents a fixed boundary condition. The 

the main difference between the two specifications is that in 
order to avoid the non-conservative results obtained when 
Equation 2 is used for certain non-uniform moment distribu-
tions, AASHTO (2007) introduces an equivalent linear mo-
ment distribution. The larger end moment and the mid-span 
moment are projected back linearly to obtain an imaginary 
smaller end moment, and then the larger value of the actual 
and imaginary smaller end moment is used to determine κ 
in Equation 2. Figure 1 illustrates an example for which a 
more appropriate solution is obtained if the magnitude of the 
mid-span moment is taken into consideration. The AASHTO 
(2007) procedure requires the calculation of two different 
equivalent moment factors—one for each of the top and bot-
tom flanges—if both flanges experience compression due to 
reversing curvatures.

BS 5950-1—Structural Use of Steelwork in Building: 
Code of Practice for Design (BSI, 2000)

The British standard specifies Equation  7 in Table 2 for 
determining the equivalent moment factor. Among all speci-
fications discussed in this study, BS 5950‑1 has the lowest 
upper limit (2.273).

Eurocode 3 EN-1993-1-1—Design of Steel Structures 
(ECS, 1992)

In Annex F of the European design code, tabulated discrete 
equivalent moment factors are provided for moment Types 1, 
2, 4 and 7 (see Table 1). These values are similar to those 
published by Clark and Hill (1960), as shown in Table 3. 
As in the original publication, the value for moment Type 2 
when β equals 1.0 appears to be in error, and it has been 
corrected accordingly in Table 3.

AS 4100—Australian Standard: Steel Structures  
(SAA, 1998)

The Australian design standard specifies Equation 8 in Table 
2 for determining the equivalent moment factor. Similar to 
Equation 5, it employs a square root format.

Fig. 1. Simplified moment diagrams according to CAN/CSA-S16-01 and AASHTO.
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(Type  2) and the other half are from models subjected to 
a mid-span point load (Type 4). The solutions selected are 
based on cross-sectional properties similar to the two dis-
tinct numerical models used in the analyses of Serna et al. 
(2006).

Suryoatmono and Ho (2002) published a suite of fi-
nite difference solutions for a 10-m-long (32.8 ft) doubly- 
symmetric wide-flange section with several different mo-
ment types: Type 1 with κ varying from −1.0 to 1.0; Types 2 
and 3 with β varying from 0 to 2.0; and Type 6 with a = L/2 
(same as Types 4 and 5 with β = 0). A total of 38 data points 
are used in the comparisons.

Serna et al. (2006) published an extensive set of equiva-
lent moment factors based on numerical results for moment 
Types 1 to 5, with various end support conditions. Only data 
associated with no end lateral rotational restraint and no 
warping restraint are used in the evaluation. These research-
ers analyzed two models with different flexural slenderness 
values to ensure that the effect of the flexural slenderness 
on the equivalent moment factors was observed. Only the 
lower value of Cb from the two models is utilized for each 
loading condition in this study. As such, a total of 67 data 
points are used.

Other numerical results used in the comparisons were 
published by Clark and Hill (1960), Nethercot and Trahair 
(1976), and Trahair (1993). They are summarized in Table 3.

RESULTS AND IMPORTANT OBSERVATIONS

Comparisons Among Methods

The equivalent moment factor values determined by the 
methods discussed previously for all 12 moment distribu-
tion types are graphically presented alongside available 
numerical results in Figures 2 to 14. The purposes of these 
comparisons are to identify deficiencies and strengths of the 
various methods and to propose a method that optimizes the 
trade-off between computational effort and accuracy over a 
broad range of moment distribution types.

Due to the large quantity of data assembled, for clarity 
of the graphs in Figures 2 through 14 not all results from 
the various methods and equations could be included. There-
fore, methods that are deemed not to provide any particular 
insight are sometimes omitted. To further alleviate difficul-
ties in interpreting the graphs due to congestion of the data, 
all numerical results use filled symbols so as to distinguish 
them from the open and unfilled symbols used for design 
specifications and other published equations. Where the so-
lutions for Equations 6 through 9 are controlled by the pre-
scribed upper limit in the relevant design specification, the 
curves above the limit are shown dashed to reflect the ac-
curacy of the equations in the event that the limit should be 
modified or eliminated.

factor β was considered over a range from negative to a large 
enough positive value so that the scenarios of single, double 
and triple flexural curvature, combined with either a maxi-
mum moment at the end or away from the braces, were all 
covered and examined. Moment diagrams with negative val-
ues of β or values greater than 1.0 provide useful insight for 
evaluating continuous span structures. The variable a, used 
for moment Types 6, 7 and 10, was assigned to provide a 
means for altering the point load location along an unbraced 
beam segment. As the location of the concentrated load coin-
cides with the maximum moment for these moment distribu-
tion types, this variation helps to develop trends of solutions 
that depict the influence of a varying distance between the 
point of maximum moment and the brace points.

Moment Types 2, 4 and 11 were selected, in part, because 
they include moment distributions that correspond to triple 
curvature. Due to the ambiguous instruction provided in 
standard CAN/CSA-S16-01 regarding the sign of κ for seg-
ments in triple curvature, solutions calculated by setting κ to 
both negative and positive are compared.

Moment Types 8, 9 and 10 are transformations of Types 2, 
3 and 7, respectively, that simulate situations in which an ex-
tra brace is placed in the middle of the original unbraced seg-
ment. Moment Types 8 and 10 are included in the analysis to 
create circumstances where the moment is relatively uniform 
over much of the length, but no moment within the unbraced 
segment exceeds the larger end moment. As noted previously, 
this situation is not covered explicitly in CAN/CSA-S16-01. 
Unlike Types 8 and 10, the moment distributions of the left 
and right segments for moment Type 9 are different; thus, two 
sets of equivalent moment factor results are evaluated.

Numerical Simulation Data

Numerical analysis results from six different research pro-
grams are included in the comparisons as reference solu-
tions. No numerical simulations were found in the literature 
for moment Types 8 to 12.

A total of 1500 critical bending stresses calculated using 
numerical analysis were tabulated by Austin et al., (1955). 
This extensive set of results was created by determining 
the critical moment of wide-flange sections with 10 dif-
ferent levels of flexural slenderness. Two loading cases—a  
uniformly distributed load and a mid-span point load—and 
25 discrete levels of in‑plane and out‑of‑plane end rotational 
restraint combinations were used. Moreover, three discrete 
levels of load application (i.e., load applied at the top flange, 
shear center, and bottom flange) were evaluated for each 
combination of the loading and boundary conditions. Be-
cause the effects of the height of load application and the 
out‑of‑plane rotational end restraint are not considered in the 
current study, only 10 out of the 1,500 solutions are used in 
the comparisons. Half of these solutions are selected from 
numerical models subjected to a uniformly distributed load 
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equation should be positive or negative for such a case, both 
positive and negative values were used to develop two differ-
ent sets of solutions for comparison. Nonetheless, both sets 
fail to follow the trend of the numerical solutions. As illus-
trated in Figure 3, all other methods produce reasonable ap-
proximations to the numerical data, with several utilizing a 
maximum permissible value to prevent the use of very large 
values in design. One exception is that the value suggested 
by Eurocode 3 for the fixed end moment case (β = 1.0) is 
very low. Although it provides an excellent representation of 
general trends, the equation proposed by Serna et al. (2006) 
appears to be too aggressive for design purposes in the  

Figure 2 demonstrates that all methods provide satisfac-
tory approximations to the numerical results for Type 1 (lin-
ear) moment distributions for κ values up to about 0.5. As 
expected, results calculated using the CAN/CSA-S16‑01 
equation closely match the numerical results over the full 
range. Among all the quarter-point moment equations, the 
AISC equation gives the most conservative results within the 
region 0.5 < κ < 1.0, with differences up to 18% compared to 
the numerical results.

For moment Type  2, the beam segment is under triple 
curvature bending when β is greater than 0. Since CAN/
CSA-S16-01 does not specify whether the sign of κ in the Cb 

Fig. 2. Cb Results for Moment Type 1.

Fig. 3. Cb Results for Moment Type 2.
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Fig. 4. Cb Results for Moment Type 3.

Fig. 5. Cb Results for Moment Type 4

region 1.0  <  β  <  1.8 because the values obtained exceed 
many of their own numerical results.

The CAN/CSA-S16-01 results also fail to follow the trend 
of the numerical data for moment Type 3. Since there is no 
moment at the left end of the unbraced segment, the Cb equa-
tion in this standard always gives results equal to 1.75 unless 
the opposite end moment is not the maximum moment in the 
segment, in which case the value is 1.0. The abrupt transition 
between these two cases is at β =  0.69. As shown in Fig-
ure 4, non-conservative results exist where 0.69 < β < 0.85. 
Most other methods perform relatively well for this moment  

distribution type over the majority of the range of common 
β values. If the upper limits of the design equations are not 
considered, AS  4100 and Serna et al. (2006) seem to ap-
proximate the upper and lower bounds, respectively, of the 
numerical data in the upper range of β, while the AISC equa-
tion is the most conservative method in the same region.

As seen in Figure 5 for moment Type 4, results obtained 
from the Kirby and Nethercot (1979) and AISC formulae 
differ significantly from the numerical results on the non-
conservative side in the region of 0.6 <  β  <  1.1 (restraint 
approaching a fixed end condition). Although the BS 5950‑1 
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taken positive for triple curvature. Otherwise, grossly con-
servative values are obtained throughout.

The Cb values obtained using CAN/CSA-S16-01 for mo-
ment Type 5 change abruptly from 1.0 to 1.75 when β = 0.89. 
Figure 6 shows that these results are dissimilar to all other 
methods. Other methods generally give reasonable results, 
with the BS5950‑1 equation being the most conservative.

Since there are no end moments in moment Type 6, CAN/
CSA-S16-01 sets Cb equal to 1.0, regardless of the location 
of the point load. Figure 7 shows that this solution is highly 
conservative in all situations. Although numerical results are 

equation is conservative in this region, it fails to capture 
the relatively abrupt change observed in the numerical data 
trends at about β = 1.0. Conversely, the AS 4100 and Serna et 
al. (2006) equations, which both use the square root format  
in the Cb equation, produce accurate approximations for this  
region and also capture the abrupt change in slope. The equa-
tion of Serna et al. (2006) is the more conservative of the two 
in this region. Similar to moment Type 2, two sets of solu-
tions calculated using the CAN/CSA-S16-01 procedures are 
plotted for this moment type. Significantly non-conservative 
values are observed within the region 1.0 < β < 1.4 if κ is 

Fig. 6. Cb Results for Moment Type 5.

Fig. 7. Cb Results for Moment Type 6.
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quarter-point moment methods, BS5950-1 gives the most 
conservative results in this region.

Similar to moment Type 6, the CAN/CSA-S16-01 equa-
tion gives Cb values equal to 1.0 for the full range of a/L for 
moment Type 7 because no end moment is present. In this 
case, it is apparent that the correct solutions should increase 
gradually from 1.0 to about 1.35 as the point loads move 
from the ends of the unbraced segment toward mid-span, as 
obtained from the equations by Trahair (1993) and Nether-
cot and Rockey (1972) that were derived for this load case 
only. Figure 8 shows that all quarter-point moment methods 

unavailable over the entire range of a /L, the actual trend of 
the solution can be reasonably predicted. The correct Cb so-
lutions should decrease gradually from about 1.75 to 1.35 as 
the point load moves from one end of the unbraced segment 
toward mid-span. It is believed that the Trahair (1993) equa-
tion provides the closest approximation to the true solutions, 
although it is intended for use with this load case only. The 
local maxima in the curves predicted by most quarter-point 
moment methods at about a /L = 0.35 appear unreasonable, 
and in the case of the AS 4100 equation the Cb values around 
the peak are likely significantly non-conservative. Of all the 

Fig. 8. Cb Results for Moment Type 7.

Fig. 9. Cb Results for Moment Type 8.
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for the ranges of −1.0 < β < 0.85 and 0 < β < 0.75, respec-
tively, and are considered to be highly non-conservative over 
most of these ranges. On the other hand, Figure 10 (Type 9, 
left unbraced segment) shows that it produces highly con-
servative results as compared to other methods. Solutions by 
other methods are, in general, consistent and appear to be 
reasonable approximations to the true solutions. The equa-
tion in BS5950-1 tends to be the most conservative of the 
quarter-point moment methods over much of the ranges, and 
especially when the maximum value is invoked.

As illustrated in Figure 12, the CAN/CSA-S16-01 equa-
tion gives a solution of 1.75 for moment Type 10, regardless 

fail to reflect the effect of the non-uniform moment distribu-
tion when the point loads are between the end and the first 
quarter-point of the unbraced segment, although all methods 
appear to provide conservative solutions over the full range 
with the exception of AS 4100.

No numerical results are available for moment Types 8 to 
12. However, evaluation of the performance of the various 
methods can be based on judgment and the knowledge ob-
tained from the results observed for moment Types 1 to 7. 
Figure 9 (Type  8) and Figure 11 (Type 9, right unbraced 
segment) show that the Cb results obtained by CAN/CSA-
S16-01 are much higher than the results of other methods 

Fig. 10. Cb Results for Moment Type 9, left unbraced segment.

Fig. 11. Cb Results for Moment Type 9, right unbraced segment.
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segment, as described previously, are in better agreement 
with other methods. Again, BS5950-1 provides the most 
conservative solutions among the quarter-point moment 
methods, although all such methods provide similar results 
over the full range of a/L.

Solutions developed for moment Types 11 and 12 are il-
lustrated in Figure 13 and Figure 14, respectively. Findings 
and observations are similar to those discussed previously 
for moment Types 2 and 3.

Although a broad investigation is presented herein that in-
cludes many procedures from the literature and design speci-
fications, it is instructive to clarify the deficiencies of the 

of the point load location. However, solutions determined 
by all other methods are much lower than 1.75 for the great 
majority of the range. It is evident in this case that the cor-
rect solutions should increase gradually from 1.0 to about 
1.75 as the point loads move from the ends of the beam to-
ward the braced mid-span. Although there are no numerical 
results to verify the correct solutions directly, it is clear that 
the solutions obtained using CAN/CSA-S16-01 are highly 
non-conservative. Conversely, the solutions of the AASHTO 
procedure, which uses the same equation as CAN/CSA-
S16-01 but is based on an imaginary smaller end moment 
determined using the moment at the center of the unbraced 

Fig. 12. Cb Results for Moment Type 10.

Fig. 13. Cb Results for Moment Type 11.
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CAN/CSA-S16‑01 method for determining equivalent mo-
ment factors. This design standard gives inconsistent results 
for all moment types evaluated in this study except for the 
linear moment distribution (Type 1), for which the procedure 
was originally derived. Driver and Wong (2007) summarize 
the ranges where this method produces acceptable results for 
each moment type presented here and conclude that the pro-
cedure is unsatisfactory over the full range in two out of the 
12 types (Types 6 and 10) and over a significant part of the 
range in nine others. In all, they identified four general types 
of deficiencies in the CAN/CSA-S16‑01 approach. First, its 
provisions tend to produce highly conservative results for 
simply supported beams that are unbraced between their 
ends because Cb always defaults to 1.0. Figure 7 indicates 
that Cb can be underestimated by more than 40% for mo-
ment Type 6, for example. Significantly conservative results 
can also occur in transversely loaded unbraced segments that 
experience either zero moment at one end of the segment 
(Cb = 1.75) or equal and opposite end moments (Cb = 1.0). 
Second, this method potentially overestimates Cb when a 
transversely loaded segment experiences a maximum mo-
ment at either end. For moment Type 10 (Figure  12), for 
example, the overestimation can be as high as 75%. Third, 
in 10 out of the 12 moment types discussed in this paper, 
Cb either remains unchanged over the entire range of a/L or 
β, or it experiences abrupt changes at particular β values, 
whereas for a gradually transforming moment distribution 
a gradually changing Cb function would appear more ap-
propriate. This suggests that the CAN/CSA-S16-01 provi-
sions, although not always producing non-conservative re-
sults, inconsistently accounts for the non‑uniform moment 

distribution effect. Finally, CAN/CSA-S16-01 is ambiguous 
in some common design circumstances because it does not 
clearly state whether or not its provisions are applicable to 
an unbraced segment that is subjected to end moments in 
combination with other loading, or whether the sign of κ 
should be positive or negative for the case of triple curva-
ture. The latter ambiguity in some cases creates a situation 
where the choice of sign results in either a highly conserva-
tive or a highly non-conservative solution. Driver and Wong 
(2007) provide a more detailed discussion of the CAN/
CSA-S16-01 provisions.

Important Observations Concerning Quarter-Point 
Moment Methods

As shown in all 12 comparisons, the quarter-point moment 
methods, which are purported to be applicable for any mo-
ment distribution, tend to give reasonable results for dif-
ferent moment types even though their levels of accuracy 
and conservatism vary. The coefficients for the four discrete 
moments used in these equations are selected deliberately to 
weight the influence of each quarter-point moment magni-
tude relative to the maximum moment, and the coefficients 
selected are highly influential to the accuracy of the results. 
A few common characteristics of these coefficients are 
observed by examining Equations 4 to 8. For example, the 
sum of all coefficients in the denominator is always equal 
to the coefficient in the numerator. This condition ensures 
that Cb = 1.0 for a uniform moment distribution (i.e., when 
Ma = Mb = Mc = Mmax). Also, the coefficient of Ma is identical 
to the coefficient of Mc to ensure that the Cb value is the same 

Fig. 14. Cb Results for Moment Type 12.
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of using the actual quarter-point values, Equations  4 to 8 
produce the result Cb = 1.0, which may be highly conserva-
tive, depending on the actual locations of the concentrated 
moments. One way to address this deficiency would be to in-
crease the number of moment parameters in the equation to 
better represent the actual moment distribution, but it would 
also increase the complexity of the equation as well as the 
concomitant computational effort required for design. Due 
to the relative rarity of these cases, this increase in complex-
ity is likely unwarranted if designers are simply aware of 
cases where the quarter-point moment equations should be 
applied with due caution.

Another concern with the quarter-point moment equations 
arises because the resulting equivalent moment factor is in-
dependent of the sign of the internal moments. It is unclear 
how these equations can account for the effect of an abrupt 
reversal of curvature in a beam, such as the one illustrated in 
Figure 16, Case 2. Although it is apparent that Case 2 load-
ing should result in a more favorable equivalent moment fac-
tor than Case 1 due to the presence of double curvature, all 
quarter-point moment equations incorrectly give the same 
Cb value for both diagrams because the absolute values of 
the moment parameters fail to distinguish between the two 

for any two mirrored moment distributions about the center-
line of the unbraced segment. The last common characteristic 
is that the coefficient of Mb is always at least equal to that of 
Ma and Mc. This represents the fact that beams with moment 
distributions where the point of maximum moment is close 
to the centerline of the unbraced segment (i.e., Mb ≈ Mmax) are 
more prone to lateral-torsional buckling than those where it 
is close to the quarter points.

All quarter-point moment methods may fail to provide 
conservative approximations of the actual equivalent mo-
ment factor under the presence of abrupt changes in the mo-
ment diagram, i.e., for segments loaded with concentrated 
moments. Arguably, this condition is rare in typical design 
problems, but it can occur, for example, when a vertical can-
tilever post affixed to the beam flange is loaded parallel to 
the beam axis. Figure 15 demonstrates one situation where 
the accuracy of the quarter-point moment equations is ques-
tionable because they fail to capture the uniformity of the 
moment distribution between the quarter points. Using any 
of Equations 4 through 8 for the two different moment distri-
butions shown in this example results in the same Cb value, 
although one case is clearly more critical than the other. If a 
designer were simply to set Ma and Mc equal to Mmax instead 

Fig. 15. Inaccuracy of quarter-point moment methods for case of abrupt change in moment.

Fig. 16. Inaccuracy of quarter-point moment methods for case of abrupt curvature reversal.
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cases. As a result, the solution for Case 2 is highly conserva-
tive. Again, refining the equations to rectify this shortcoming 
is likely unnecessary because this scenario is also relatively 
uncommon, but designers need to be aware of the limitations 
of the procedure.

PROPOSED EQUATION

It is evident from the foregoing discussion that modifica-
tions are required to improve the accuracy of the CAN/CSA-
S16-01 equivalent moment factor procedures. All other 
methods considered in this investigation are more versatile; 
however, these methods have their own drawbacks. The 
method proposed by Trahair (1993) tends to provide very 
good results, but it relies on several independent equations, 
each having a limited scope of application, and therefore be-
comes somewhat cumbersome for general design purposes. 
The use of a table of individual Cb values for specific cases, 
similar to those of Clark and Hill (1960), Nethercot and 
Trahair (1976) and Eurocode  3, is considered undesirable 
for design specifications due to the innumerable common 
cases for which no guidance would be provided. Although 
the AASHTO procedure effectively eliminates many of the 
non-conservative results obtained from Equation 2 by using 
an equivalent linear moment diagram, it still gives highly 
conservative results for simply supported beams braced only 
at the ends and subjected to transverse loading. Despite their 
shortcomings for certain rare cases, as discussed in the pre-
vious section, the quarter-point moment approach shows the 
most promise of wide applicability, combined with simplic-
ity, and for the most part these equations capture the trends 
observed in the numerical data well in the cases considered. 
Their accuracy, however, depends largely on the coefficients 
of the moment terms. The equation in the British standard 
tends to give very conservative results for several moment 
types. The Kirby and Nethercot (1979) and AISC equations 
are nearly equivalent and generally give good results. How-
ever, they are unable to capture the trends of the numeri-
cal data for the common case of moment Type 4 and give 
non-conservative results (up to about 32%) in the region of 
0.6 < β < 1.1.

Equations 5 and 8 (Table 2), by Serna et al. (2006) and 
specified in the Australian design standard, respectively, 
generally capture the Cb  trends very well. Their ability to 
provide better results for moment Type  4 than the Kirby 
and Nethercot (1979) and AISC equations is attributed to 
the square root format that makes Equations 5 and 8 unique 
among the quarter-point moment equations considered in 
this investigation. However, both Equations 5 and 8 produce 
Cb values in some situations that exceed the numerical data 
significantly, thereby producing non-conservative results. 
Equation 8 gives results that exceed the numerical data for 
moment Types 2, 4 and 6, and in cases where no numeri-
cal data are available, it often produces the highest Cb val-

ues of all methods considered. Similar drawbacks exist for 
Equation 5, although many of the cases where the numerical 
data are exceeded are for the larger values of Cb that could 
be eliminated by using an upper bound on the permissible 
values. In light of the rather sparse set of corroborating nu-
merical and experimental data available, both equations are 
judged to be too aggressive for design use. Therefore, a mod-
ified quarter-point moment equation utilizing the superior 
square root format is proposed for design in order to provide 
accurate Cb  values and properly represent the data trends, 
while at the same time minimizing the chance of obtaining 
non-conservative beam capacities. This equation takes the 
following form:

	 C
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2 2 2 2

2 5 	 (9)

where the moment parameters are defined in the same way 
as for the other quarter-point moment equations discussed 
herein. The upper limit of 2.5 is selected to prohibit the use 
of very high Cb values in design, although a different upper 
limit could be selected and justified based on reliability con-
siderations. Nevertheless, it must be noted that the proposed 
equation appears to produce good results even without this 
limit. Therefore, if the limit were to be increased or removed, 
the better performance of the proposed equation, as com-
pared to the other quarter-point moment methods that use the 
square root format, becomes even more important.

As shown in Figures 2 through 14, the proposed equivalent 
moment factor equation (Equation 9) provides far better ap-
proximations to the numerical data (and to estimated correct 
solutions where no such data exist) than does the equation 
in CAN/CSA-S16-01, and it also addresses shortcomings of 
the other methods, while producing appropriately conserva-
tive Cb values for design. For instance, it effectively avoids 
producing the non-conservative results obtained by the AISC 
equation for moment Type 4 in the range 0.6 < β < 1.1 (the 
AISC and proposed equation curves are plotted with a heavi-
er line weight to facilitate comparison). The proposed equa-
tion also gives very good results for loading that produces a 
linear moment distribution between brace points (Type 1), as 
shown in Figure 2.

SUMMARY AND CONCLUSIONS

Numerous published methods and equations for determin-
ing equivalent moment factors used in evaluating the elastic 
critical moment of laterally unsupported beams have been 
compared for a wide variety of moment distribution types. 
The investigation revealed that the procedure used currently 
in the Canadian design standard produces unacceptable 
results for the majority of the common bending moment 
distributions considered. Not only does this method give 
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grossly conservative results for many common cases, it also 
frequently gives unconservative results. Large abrupt chang-
es in Cb values with only slight changes in the shape of the 
moment diagram were observed in 6 out of the 12 moment 
distribution comparisons, which contributes to the overall 
poor performance of the procedure. Moreover, it does not 
give clear direction as to the sign of κ when the beam is 
under triple curvature.

The study also revealed drawbacks inherent in other meth-
ods. Overall, the quarter-point moment equations developed 
for general moment distributions capture the trends of the 
numerical data reasonably well. However, the evaluations 
show that the Kirby and Nethercot (1979) and AISC (2005) 
equations produce non-conservative results in some situa-
tions, while the BS 5950‑1 (BSI, 2000) equation, although 
generally conservative, produces comparatively less accurate 
results. The Serna et al. (2006) and AS 4100 (SAA, 1998) 
equations capture the trends of the numerical data more con-
sistently by implementing a square root format in the quarter- 
point moment method. However, they produce results that 
exceed the numerical data in several cases, implying that 
both equations are too aggressive for design purposes.

To capture the best features of the various methods inves-
tigated, yet improve the overall suitability for general design 
purposes, a modified quarter-point moment equation using 
the square root format (Equation 9) is proposed. Not only 
does it simulate the trends of the numerical solutions closely, 
but it also produces reasonable and conservative equivalent 
moment factors, even in cases where other methods do not. 
Moreover, it is simple and well-suited to design applica-
tions. Like all quarter-point moment methods, the proposed 
equation does not produce good results in some situations 
where concentrated moments are applied. Nevertheless, it is 
believed to be appropriate for the vast majority of typical 
design cases.
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